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Computing the Topological Entropy for Piecewise
Monotonic Maps on the Interval
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A new method for computing the topological entropy of a piecewise monotonic
transformation on the interval is presented. It uses a transition matrix
associated with the transformation. For this matrix we give a spectral theorem.
This can be used for an estimation of the accuracy of the algorithm.
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1. INTRODUCTION

Dynamical systems generated by iterated maps are used to describe the
chaotic behavior of physical and other natural phenomena. The topological
entropy of a map is one of the quantitative measures of the complexity of
these dynamical systems. In this paper we consider maps on the interval.

A map T : [0, 1] � [0, 1] is called piecewise monotonic if there are
ci # [0, 1] for 0�i�N with 0=c0< } } } <cN=1 such that T | (ci , ci+1)

is continuous and strictly monotone for 0�i<N. Set Z=[(ci , ci+1):
0�i<N ] and Zn=�n

i=0 T &iZ :=[�n
i=0 T &iZi{<: Zi # Z]. Then Zn is

the set of intervals on which monotonicity of T n+1 holds. This is proved
in Lemma 1. For n�0 denote the number of elements of Zn by cn(T ).

For a piecewise monotonic map T on the interval we define the
topological entropy htop(T ) by

htop(T ) := lim
n � �

1
n

log(cn(T ))
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Observe that cn+m(T )�cn(T ) cm(T ) holds, which implies the existence of
the limit in the above definition (see ref. 16). In refs. 11 and 13 it is shown,
that this definition is equivalent to the usual definition of topological
entropy as it can be found in ref. 16.

The definition of topological entropy suggests an obvious method of
computing htop(T ): Obtain a suitable estimate of cn(T ) for large n, then
log(cn(T ))�n is an estimate of htop(T ). The problem of this method is the
slow convergence rate of the expression log(cn(T ))�n to htop(T ). Even
under the best circumstances, if cn(T )=C exp(htop(T ) n), the convergence
rate is O(1�n), except of the special case when C=1. In this paper we show
that cn(T )=cnehtop(T ) n+rn where the cn are bounded and periodic and
|rn |�K:n for a constant K and :<ehtop(T ). To prove this we use a tran-
sition matrix associated with T. In such a case a good method of com-
puting htop(T ) is to compute cn1

(T ),..., cnk
(T ) for a sequence of values

n1< } } } <nk and to calculate any suitable line of best fit (e.g. the line of
least squares) to the data pairs (n1 , log cn1

(T )),..., (nk , log cnk
(T )). Then the

slope of this best fit line is a good estimate of htop(T ). Furthermore the
associated transition matrix allows us to compute cn(T ) in a computation
time growing with n2.

Algorithms for computing the topological entropy for the special case
of unimodal maps are described in refs. 4 and 5. The approach of ref. 4 is
extended in ref. 3 to maps with three monotone pieces.

Algorithms for computing the topological entropy of general piecewise
monotonic transformations of the interval are presented in refs. 2, 1, and 7.
All three papers use methods motivated by maps with the Markov property.

In ref. 14 two algorithms for computing entropy for higher dimen-
sional dynamical systems are presented.

2. COMPUTING Cn(T) USING THE MARKOV DIAGRAM

As described above the problem of computing htop(T ) reduces to the
problem of computing cn(T ) for arbitrary n�0 We present a method
which uses the so called Markov diagram of T over Z. This concept is due
to Hofbauer and developed in refs. 9�12.

For an open subinterval D of a Z0 # Z the nonempty intervals among
T (D) & Z for Z # Z are called successors of D. We write D � C if C is a
successor of D. All successors of a D are again open subintervals of a
Z1 # Z since T is piecewise monotonic. Hence building successors can be
iterated.

Set D0=Z and define Di=Di&1 _ [D: _C # Di&1 with C � D]. Then
all the Di are finite sets since Z is a finite set and each D # Di&1 has not
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more than card(Z) successors. Hence D=��
i=0 Di is at most countable

and we call the oriented graph (D, � ) with arrows C � D, if D is a
successor of C, the Markov diagram of ([0, 1], T ) over Z.

A finite or infinite sequence D0D1 . . . with Di # D is called path if
Di � Di+1 holds for i�0.

The Markov diagram can be conceived as a matrix M. Let M be the
D_D matrix with MCD=1 if C � D and MCD=0 else. Since the number
of successors of a C # D is bounded by card(Z)=N we get �D # D MCD

�N. Hence u � uM is an l 1(D)-operator and v � Mv is an l �(D)-
operator. Both operators have the same norm, denoted by &M&, which
equals supC # D |�D # D MCD |. Hence both operators have the same spectral
radius denoted by r(M) since r(M)=limn � �

n
- &Mn&. In Theorem 7 of

ref. 11 it is proved that htop(T )=log r(M) holds.
In order to investigate the matrix M we start with the following

lemma.

Lemma 1. Suppose Zi # Z for i�0 and let D be an open interval
with D�Z0 . Set D0=D and Di+1=T (D i) & Zi+1 for i�0. Furthermore
set Ai=D & T &1(Z1) & } } } & T &i (Zi) for i�0. Then

(1) Ai=� i
j=0 T & j (Dj) and Ai is an interval for i�0

(2) T i (Ai)=D i for i�0

(3) T i+1 is monotone on Ai for i�0.

Proof. The lemma is proved by induction. For i=0 we have
A0=D0=D and T 0(A0)=A0 . Suppose the assertions are proved for i�0.
Since T i+1 is monoton on Ai we get that Ai+1=A i & T &(i+1)(Zi+1) is an
interval. We use f (A & f &1(B))= f (A) & B. Since Dj�Z j for all j, we get
�i+1

j=0 T & j (Dj)�Ai+1 . On the other hand

,
i+1

j=0

T & j (Dj)= ,
i

j=0

T & j (Dj) & T &(i+1)(T (D i) & Zi+1)

= ,
i

j=0

T & j (Dj) & T &(i+1)(T (D i & T &1(Zi+1)))

$ ,
i

j=0

T & j (Dj) & T &i (D i) & T &(i+1)(Zi+1)

=Ai & T &(i+1)(Zi+1)=Ai+1
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which proves (1). To prove (2) observe

T i+1(Ai+1)=T i+1(Ai & T &(i+1)(Zi+1))=T i+1(Ai) & Zi+1

=T (Di) & Zi+1=Di+1

The proof of (3) uses that T i+1: Ai+1 � T i+1(Ai+1)=Di+1 is assumed to
be monotonic, since Ai+1�Ai . Because of Di+1�Zi+1 we get that
T : Di+1 � T (D i+1) is monotonic. Hence T i+2: A i+1 � T (Di+1) is mono-
tonic. K

The next result gives the theoretical background of the main tool for
computing the topological entropy.

Theorem 1. Suppose T : [0, 1] � [0, 1] is piecewise monotonic.
Then for k�0

(1) there is a bijection between the set Zk and the set of paths in D

with length k starting in an element of D0=Z

(2) we get ck(T )=&uMk&1 where u # l 1(D) is given by uD=1 if
D # Z and uD=0 else.

Proof. To proof (1) we attach to every element A=�k
i=0 T &i (Zi)

# Zk the path D0 } } } Dk where D0=Z0 and D i+1=T (Di) & Zi+1 for
1�i<k holds.

By Lemma 1 we get Di=T i (A) and hence Di{<.
This map is injective: Suppose C0 } } } Ck is a path which is attached to

A=�k
i=0 T &i (Zi) as well as to B=�k

i=0 T &i (Yi). Then C0=Z0=Y0

holds. If Zi=Yi is proved for i< j�k, then also Zj=Yj holds, since
T (Cj&1) & Zj=Cj=T (Cj&1) & Y j and since the elements of Z are disjoint.

This map is surjective: Let C0 } } } Ck be a path of length k starting
in Z. Because of Lemma 1 we get with B :=�k

i=0 T &i (Ci) that T k(B)=Ck

and hence B{<. Again by Lemma 1, B # Zk follows and the path
C0 } } } Ck is attached to B.

To prove assertion (2) observe that &uMk&1 equals the number of
paths in D with length k starting in an element of Z, since uD=1 if D # Z

and uD=0 else. With (1) the equation ck(T )=&uMk&1 follows. K

3. THE ALGORITHM

The results, which we have presented until now, suggest the following
algorithm for computing the topological entropy of a piecewise monotonic
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transformation T on [0, 1]. Let (n1 ,..., nk) be any sequence of numbers for
which cnj

(T ) should be evaluated. To get an estimate of htop(T ) one has to
do the following:

(1) Build up the finite parts Dnj
of the Markov diagram for 1� j�k

successively. As we will see below, the orbits of length nj of the endpoints
of the intervals of monotonicity determine Dnj

completely.

(2) Compute cnj
(T ) for 1� j�k with use of Proposition 1 below. To

compute cnj
(T ) it suffices to know the finite part of the Markov diagram

Dnj
since all paths of length nj starting in Z are contained in Dnj

.
To compute the number cm(T ) for an m�0 there is a fast inductive

method. For C # Dm and 0� j�m let NC( j) be the number of paths of
length j which start in an element in Z and end in C. Then NC(0)=1
for C # Z and NC(0)=0 for C � Z. Furthermore we get NC( j+1)=
�D � C ND( j) for 0� j<m and cm(T )=�C # Dm

NC(m). Observe that
NC(m)=0 if C is not an element of Dm .

(3) Calculate the least squares line (or any other line of best fit)
through the data pairs (n1 , log cn1

(T )),..., (nk , log cnk
(T )). The slope of this

line is an estimate of htop(T ).

A piecewise monotonic transformation T : [0, 1] � [0, 1] is called
piecewise increasing if T is increasing on its intervals of monotonicity.
This assumption simplifies the computation of the Markov diagram since
a piecewise increasing transformation preserves the ordering. In ref. 10
it is described how to construct a piecewise increasing transformation
T� : [0, 1] � [0, 1] for every piecewise monotonic transformation T such
that cn(T� )=2cn(T ) holds for every n�0. Hence it suffices to describe the
Markov diagram of piecewise increasing transformations.

Let T : [0, 1] � [0, 1] be piecewise increasing and let Z=[Zi=
(xi , yi): 1�i�N ] be the intervals of monotonicity, where x i+1= yi .
Furthermore set y0 :=x1=0 and xN+1 :=yN=1.

If there is a j>0 with limyzxi
T j ( y)=xk for 1�k�N set n+(xi)=

min[ j>0: limyzxi
T j ( y)=xk for a k with 1�k�N ]. Otherwise set

n+(xi)=�.
Analogously we define: If there is a j>0 with limyZyi

T j ( y)= yk for
1�k�N set n&( yi)=min[ j>0: limyZyi

T j ( y)= yk for a k with 1�
k�N ]. Otherwise set n&( yi)=�.

Set d(i, 0)=i and for 0< j<n+(xi) choose d(i, j) with 1�d(i, j)�N,
such that T j (xi) # (xd(i, j) , yd(i, j)). For j=n+(xi)<� choose d(i, j) with
0�d(i, j)<N, such that limy z xi

T j ( y)=xd(i, j)+1 .
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Analogous set e(i, 0)=i and choose for 0< j<n&( yi) the number
e(i, j) with 1�e(i, j)�N, such that T j ( yi) # (xe(i, j) , ye(i, j)). For j=
n&( yi)<� let e(i, j) with 1<e(i, j)�N+1 be such that limy Z yi

T j ( y)=
ye(i, j)&1 .

Set R(i, 0)=S(i, 0)=0 and define inductively for j�1, as long as all
appearing numbers exist:

r(i, j)=min[k�1: d(i, R(i, j&1)+k){e(d(i, R(i, j&1)), k)]

and if r(i, j)<� set R(i, j)=R(i, j&1)+r(i, j)

s(i, j)=min[k�1: d(e(i, S(i, j&1)), k){e(i, S(i, j&1)+k)]

and if s(i, j)<� set S(i, j)=S(i, j&1)+s(i, j).
Observe that r(i, 1)=s(i, 1) holds. If n+(xi)<�, then R(i, j)=n+(x i)

for a j�1. In this case r(i, k) and R(i, k) remain undefined for k> j. The
same holds if n&( yi)<�.

Proposition 1. Set A i
0=Zi for 1�i�N and for j�1 set

Ai
R(i, j)=(T R(i, j)(x i), yd(i, R(i, j)))

and

Bi
S(i, j)=(xe(i, S(i, j)) , T S(i, j)( y i))

If k{R(i, j) set A i
k=T (A i

k&1) and if k{S(i, j) set B i
k=T (B i

k&1). Then
the Markov diagram (D, � ) consists of the following elements and
arrows:

(1) A i
k&1 � A i

k for 1�i�N and 1�k<n+(xi)

(2) A i
R(i, 1)&1 � B i

r(i, 1) if r(i, 1)<n&( yi)

(3) B i
k&1 � B i

k for 1�i�N and S(i, 1)<k<n&( yi)

(4) A i
R(i, j)&1 � Bd(i, R(i, j&1))

r(i, j) for j>1 and r(i, j)<n&( yd(i, R(i, j&1)))

(5) A i
R(i, j)&1 � A l

0 for d(i, R(i, j))<l<e(d(i, R(i, j&1)), r(i, j))

(6) B i
S(i, j)&1 � Ae(i, S(i, j&1))

s(i, j) for j>1 and s(i, j)<n+(xe(i, S(i, j&1)))

(7) B i
S(i, j)&1 � Al

0 for j>1 and d(e(i, S(i, j&1)), s(i, j))<l<
e(i, S(i, j)).

Proof. The proof is given in Part II of ref. 9. K
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The above proposition shows that the Markov diagram is determined
by the orbits of the endpoints of the intervals of monotonicity. It implies
that Dn contains at most N(2n&1) different sets. Also the inductive method
of computing NC(m) given above can be described more exactly with
Proposition 1. Suppose (NC(m))C # Dm

is computed, then (ND(m+1))D # Dm+1

is built up in the following way:
Start with ND(m+1)=0 for all D # Dm+1 . Add NAi

k&1
(m) to NAi

k
(m+1)

and NB i
k&1

(m) to NB i
k
(m+1). This corresponds to Proposition 1 (1) and

(3). If k{R(i, j) for all j then this is the only computation one has to do
with NAi

k&1
(m) and if k{S(i, j) for all j then this is the only computation

one has to do with NBi
k&1

(m). If k=R(i, j) for some j then add NAi
k&1

(m)
to ND(m+1) for all D appearing in (2), (4) and (5), and if k=S(i, j) for
some j then use (6) and (7).

For an estimate of the computation time of cm(T ) observe that
computing d(i, j) or e(i, j) for some i, j needs at most N comparisons of
numbers. Hence the computation for all the d(i, j) and e(i, j) needs at most
2N2m comparisons of numbers. Similar, computing all the r(i, j), s(i, j),
R(i, j) and S(i, j) needs at most N(2m&1) comparisons of numbers and
additions. The computation of cm(T ) needs at most N2m(2m&1) additions
and hence the total computation time for computing cm(T ) is O(m2).

4. EXAMPLE

We use the well known logistic map f (x)=ax(1&x), for a less but
near 4, to illustrate the results of the previous part. First of all we restrict
our attention to the interval [0, f (c)] where c=1�2 is the critical point
and f (c)=a�4 holds. This makes the transformation onto and clearly does
not change entropy.

Next we use the method of ref. 10 to construct the associated piecewise
increasing transformation. First we shrink the graph of f to the square
[0, f (c)�2]2. This means that we consider f $(x)= f (2x)�2. Then we mirror
the decreasing part of f $ on the line y= f (c)�2 such that it becomes increasing.
Hence we get

f "(x)={ f $(x)
f (c)& f $(x)

if x is in the increasing part of f $
if x is in the decreasing part of f $

At last we define f $$$ on [ f (c)�2, f (c)] by f $$$(x)= f (c)& f "( f (c)&x)
which means that we mirror the graph of f " on the vertical line x= f (c)�2
and on the horizontal line y= f (c)�2. Then the associated piecewise
increasing transformation T is given by T (x)= f "(x) if x # [0, f (c)�2) and
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T (x)= f $$$(x) if x # ( f (c)�2, f (c)] and we let T undefined in the point
f (c)�2. In other words we consider T: [0, f (c)] [ [0, f (c)] given by

T (x)=

f (2x)
2

if 0�x�
1
4

f (c)&
f (2x)

2
if

1
4

�x<
f (c)

2

f (2( f (c)&x))
2

if
f (c)

2
<x� f (c)&

1
4

f (c)&
f (2( f (c)&x))

2
if f (c)&

1
4

�x� f (c)

Then 1&T (x)=T (1&x) holds and in ref. 10 it is shown that htop(T )=
htop( f ) holds.

In Fig. 1 and for the following explicit computation of the finite part
D10 of the Markov diagram we have chosen a=3.89.

Next we explain how one computes the Markov diagram step by step.
The sets which appear in D10 are drawn in the figure.

Compute the successors under T of C0 and D0 , the two intervals of
monotonicity. C0 has two successors namely C0 itselve (C0=T (C0) & C0)

Figure 1.
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and C1=T (C0) & D0 . The same is true for D0 , which is a successor of
itselve and the other successor is D1=T (D0) & C0 .

Next compute the successors of C1 and D1 . C1 has two successors
T (C1) & C0=D1 and T (C1) & D0=C2 and for D1 we get the two suc-
cessors T (D1) & D0=C1 and T (D1) & C0=D2 . We get D2 :

/� C0 ww� C1 ww� C2

/� D0 ww� D1 ww� D2

When computing the successors again, one sees that C2 has only one
successor C3=T (C2). But C3 has 2 successors T (C3) & D0=C4 and
T (C3) & C0 which equals D2 since C2 has its left endpoint in common
with D0 . C4 has the two successors T (C4) & D0=C5 and T (C4) & C0 which
equals D1 since C4 has its left endpoint in common with D0 . Then we get
that T (C5)=C6 , T (C6)=C7 and T (C7)=C8 are the only successors.
C8 has the two successors T (C8) & D0=C9 and T (C8) & C0 which equals D4

again since C5 has its left endpoint in common with D0 . At last C10 is the
only successor of C9 . Using the symmetry of the transformation, we get D10

/� C0 � C1 � C2 � C3 � C4 � C5 � C6 � C7 � C8 � C9 � C10

/� D0 � D1 � D2 � D3 � D4 � D5 � D6 � D7 � D8 � D9 � D10

The second method to compute the finite part D10 of the Markov
diagram is that one we presented in the last paragraph. This method can
be implemented on a computer directly. We now use the notation of
paragraph 3.

We have Z1=(x1 , y1)=(0, f (c)�2) and Z2=(x2 , y2)=( f (c)�2, f (c)).
Clearly limyzx1

T ( y)=x1 and limyZy2
T ( y)= y2 holds. This implies n+(x1)

=1 and n&( y2)=1. The first step in computing D10 is to compute d(i, j)
and e(i, j) for i=1, 2 and 0� j�10. With the choice a=3.89 we get

d1=(d(1, 0), d(1, 1))=(1, 0) since n+(x1)=1

e1=(e(1, 0),..., e(1, 10))=(1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1)

d2=(d(2, 0),..., d(2, 10))=(2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2)

e2=(e(2, 0), e(2, 1))=(2, 3) since n&( y2)=1
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This sequences include the whole information to compute D10 . We have
to set R(1, 0)=S(1, 0)=0 and R(2, 0)=S(2, 0)=0. Next we compute
r(1, 1)=min[k�1: d(1, k){e(1, k)] and r(1, 1)=1 follows. This implies
R(1, 1)=s(1, 1)=S(1, 1)=1 and since R(1, 1)=n+(x1) holds, r(1, j) and
R(1, j) for j>1 remain undefined. The next calculations are

s(1, 2)=min[k�1: d(e(1, 1), k){e(1, k+1)]

=min[k�1: d(2, k){e(1, k+1)]=1

which implies S(1, 2)=2

s(1, 3)=min[k�1: d(e(1, 2), k){e(1, k+2)]

=min[k�1: d(2, k){e(1, k+2)]=2

and S(1, 3)=4

s(1, 4)=min[k�1: d(e(1, 4), k){e(1, k+4)]

=min[k�1: d(2, k){e(1, k+4)]=1

and S(1, 2)=5

s(1, 5)=min[k�1: d(e(1, 5), k){e(1, k+5)]

=min[k�1: d(2, k){e(1, k+5)]=4

which gives at last S(1, 2)=9.
The symmetry of the transformation T implies s(1, j)=r(2, j) and

r(1, j)=s(2, j) and we can summerize

r(1, 1)=r(2, 1)=s(1, 1)=s(2, 1)=1, R(2, 1)=S(1, 1)=1

r(2, 2)=s(1, 2)=1, R(2, 2)=S(1, 2)=2

r(2, 3)=s(1, 3)=2, R(2, 3)=S(1, 3)=4

r(2, 4)=s(1, 4)=1, R(2, 4)=S(1, 4)=5

r(2, 5)=s(1, 5)=4, R(2, 5)=S(1, 5)=9

and r(1, j), R(1, j), s(2, j) and S(2, j) stay undefined for j>1.
Now we can build up D10 according to Proposition 1:

(1) gives A2
0 � A2

1 � } } } � A2
10 and no arrow departing from A1

0

since n+(x1)=1.

(2) gives A1
0 � B1

1 and no arrow from A2
0 since n&( y2)=1=r(2, 1).
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(3) gives the arrows B1
1 � } } } � B1

10 .

(4) For i=1 we have nothing to do since the values r(1, j) are
undefined for j>1.

So consider i=2 and j=2. The arrow A2
R(2, 2)&1=A2

1 � Bd(2, R(2, 1))
r(2, 2)

=B1
1 is inserted since r(2, 2)=1<n&( yd(2, R(2, 1)))=n&( y1)>10.
For j=3 the arrow A2

R(2, 3)&1=A2
3 � Bd(2, R(2, 2))

r(2, 3) =B1
2 is inserted since

r(2, 3)=2<n&( yd(2, R(2, 2)))=n&( y1)>10.
For j=4 we get the arrow A2

R(2, 4)&1=A2
4 � Bd(2, R(2, 3))

r(2, 4) =B1
1 since

r(2, 4) = 1 < n&( yd(2, R(2, 3))) = n&( y1)>10 and since r(2, 5) = 4 <
n&( yd(2, R(2, 4)))=n&( y1)>10 we insert the arrow A2

R(2, 5)&1=A2
8 �

Bd(2, R(2, 4))
r(2, 5) =B1

4 . Since the transformation T is symmetric we get by condi-
tion (6) the symmetric arrows to that of condition (4). This also can be
easily computed. We get the arrows B1

1 � A2
1 , B1

3 � A2
2 , B1

4 � A2
1 and

B1
8 � A2

4 .

(5) We start with i=1 and j=1 and get A1
0 � Al

0 for d(1, 1)=
0<l<e(d(1, 0), r(1, 1))=e(1, 1)=2. This is the arrow A1

0 � A1
0 . The

values r(1, j) do not exist for j>1.

So we consider i=2 and j=1 and obtain A2
0 � Al

0 for d(2, 1)=
1<l<e(d(2, 0), r(2, 1))=e(2, 1)=3. This gives A2

0 � A2
0 . The case i=2

and j=1 gives no arrow since there is no integer l with d(2, 2)=1<l<
e(d(2, 1), r(2, 2))=e(1, 1)=2. In the same way one can see that j=3, 4, 5
give no arrow and using the symmetry, or computing (7) explicitly shows
that we have found all arrows.

This gives the D10 , which is the same diagram as we have computed
above step by step:

/� A1
0 � B1

1 � B1
2 � B1

3 � B1
4 � B1

5 � B1
6 � B1

7 � B1
8 � B1

9 � B1
10

/� A2
0 � A2

1 � A2
2 � A2

3 � A2
4 � A2

5 � A2
6 � A2

7 � A2
8 � A2

9 � A2
10

5. SPECTRAL PROPERTIES OF THE MARKOV DIAGRAM

As described above, we conceive the Markov diagram of a piecewise
monotonic transformation as a D_D-matrix M. We will prove a spectral
theorem for this matrix (see Theorem 2 below).

A subset C�D is called closed, if D # C and D � C imply C # C. It is
called irreducible, if, whenever C # C and D # C, a path leads from D to C
and no subset of D which contains C has this property.
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Lemma 2. Suppose that T is topologically transitive, htop(T )>0
and Z is a generator. Then there is an irreducible closed subset C�D,
such that all irreducible subsets of D"C consist only of a single closed path
and for all D # D"C there is a path starting in D which leads to C.

Proof. The prove can be found in ref. 8. K

Lemma 3. Under the same assumptions as in Lemma 2 there is a
strictly positive vector v # l �(D) with Mv=r(M) v.

Proof. Since htop(T )>0 is assumed, r(M)>1 follows. The existence
of a nonnegative right eigenvector v # l �(D) for the eigenvalue r(M) is
stated in Corollary 1 to Theorem 9 of ref. 11.

Since r(M)>1 holds and because of Lemma 2 the vector v must have
a strictly positive entry at one of the coordinates in the set C of Lemma 2.
Observe that vA>0 implies vB>0 for B # D, whenever there is a path
starting in B which meets A. Hence Lemma 2 implies that all entries of v
are positive. K

Lemma 4. Suppose T is a piecewise monotonic transformation and
htop(T )>0. Then there is k # N and a finite dimensional operator E on
l 1(D) with &Mk&E&<r(M)k.

Proof. Choose k # N such that r(M)k>2 holds. Define 6Dk
:

l 1(D) � l 1(D) by

(6Dk
(u))D={uD

0
for D # Dk

for D # D"Dk

Then the image of 6Dk
b Mk is contained in a finite dimensional subspace

of l 1(D). Hence the operator 6Dk
b Mk is finite dimensional. For u # l 1(D)

we compute

&u(Mk&6Dk
b Mk)&1= :

D # D
} :
C # D

uC(Mk
CD&(6Dk

b Mk)CD)}
� :

D # D

:
C # D

|uC | (Mk
CD&(6Dk

b Mk)CD)

= :
D # D"Dk

:
C # D

|uC | Mk
CD= :

C # D

|uC | Nk(C )

where Nk(C ) denotes the number of paths of length k which start in C and
end in D"Dk .
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We get Nk(C )�2 for all C # D: In the same way as in the proof of
Theorem 1 we have a bijection between the paths of length k starting in
C and the elements Z # Zk with Z & C{<. If A # Zk corresponds to
C=C0 � } } } � Ck then Ck=T k(C & A) holds because of Lemma 1. There
are at most 2 elements Z # Zk such that C & Z{Z holds. All paths which
correspond to the other Z # Zk have T k(Z) as their last element and end
in Dk because of Lemma 1.

Hence Nk(C )�2 and

&u(Mk&6Dk
b Mk)&1�2 &u&1<r(M)k &u&1 K

Lemma 8.2 in ref. 6 and Lemma 4 imply the following representation
of Mn.

Proposition 2. Let T : [0, 1] � [0, 1] be piecewise monotonic and
htop(T )>0. Then there is k # N such that for all n # N

Mn= :
k

i=1

*n
i (Pi+Ni)

n+(PM)n

where *i are isolated eigenvalues with |*i |=r(M), Pi are projections onto
the finite dimensional generalized eigenspace of *i and N i are nilpotent
for 1�i�k. For i{ j with 1�i, j�k we get PiPj=PjPi=0, PiN i=
Ni Pi=Ni and PPi=Pi P=0. Furthermore P2=P and r(PM)<r(M).

Set M� =M�r(M). For r # l 1(D) and s # l �(D) set |r|=( |rD | )D # D and
(r, s)=�D # D rDsD .

Lemma 5. Suppose the assumptions of Lemma 2 are fulfilled and
let Ni be the nilpotent operators of the above proposition. Then Ni#0 for
1�i�k.

Proof. Because of Lemma 3 a strictly positive eigenvector v # l �(D)
of M� for the eigenvalue 1 exists.

Suppose there is i with Ni �0. Then l>1 exists with N l
i#0 and

Nl&1
i �0. Choose p # l 1(D) such that pN l&1

i =: w{0. Then wNi=pN l
i =0

and wPi=pN l&1
i Pi=pN l&1

i =w. Set u :=pN l&2
i . We get uN i=w{0 and

uNn
i =0 for all n�2. Furthermore uP j=u for j=i and uPj=0 for j{i

holds. At last uNj=0 for j{i and uP=0.
Since |w|�0 and since v is strictly positive we get that ( |w|, v) >0

holds. Hence we can choose n # N such that n>(2( |u|, v) )�(( |w|, v) ). We
compute
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uM� n=
1

r(M)n \ :
k

j=1

*n
j u(Pj+Nj)

n+u(PM)n+
=\ *i

r(M)+
n

\uPn
i +\n

1+ uPn&1
i Ni+\n

2+ uPn&2
i N2

i + } } } +
=\ *i

r(M)+
n

u+\ *i

r(M)+
n

nw

This implies n |w|�|u|+|u| M� n, since M� n is positive and |*i |=r(M) holds.
We get

n( |w|, v)�( |u|, v)+( |u| M� n, v)

=( |u|, v)+( |u|, M� nv) =2( |u|, v)

This contradicts the choice of n. K

Lemma 6. Suppose again the assumptions of Lemma 2 are fulfilled.
Then supn�1 &M� n&<�.

Proof. Because of Proposition 2 and Lemma 5 we get

M� = :
k

i=1

*i

r(M)
Pi+R with R=PM�

Furthermore r(R)=r((1�r(M)) PM)=r(PM)�r(M)<1 follows. Hence we
get M0 :=supn�1 &Rn&<�. We compute for an arbitrary u # l 1(D)

&uM� n&1� :
k

i=1
} *i

r(M) }
n

&uP i&1+&uRn&1�k &u&1+M0 &u&1

and the result follows. K

We have checked all assumptions of Theorem 8.8 in ref. 6 and get the
following result, where we denote the spectrum of an operator M by _(M).

Theorem 2. Let T: [0, 1] � [0, 1] be piecewise monotonic and
topologically transitive. Suppose Z is a generator and htop(T )>0. Then
_(M)=_ _ [*1 ,..., *k], where _ is a closed subset of [z # C: |z|<:] for an
:<r(M). For 1� j�k we get that *j is an eigenvalue of M and there is
%j # Q with *j=r(M) e2?i%j. Furthermore projections P1 ,..., Pk and P exist
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with P1+ } } } +Pk+P=Id, where Pj is the projection onto the eigenspace
of *j . With R=PM we get

Mm= :
k

j=1

r(M)m e2?i%j mPj+Rm and sup
m # N

1
:m &Rm&<�

We use the above theorem to compute cm(T ) for m�0.

Theorem 3. Under the assumptions of Theorem 2 there are p # N
and numbers ci with 0<ci<� for 1�i�p such that for all m # N and
with i=m mod( p)

cm(T )=cir(M)m+rm

holds, where |rm |�K:m for a constant K and the : of Theorem 2.

Proof. Set wD=1 for all D # D and vD=1 for D # D0 and vD=0 for
D � D0 . Theorem 1 and Theorem 2 imply

cm(T )=&vMm&1=(vMm, w) =r(M)m :
k

j=1

e2?i%j m(vP j , w) +(vRm, w)

For m # N set cm=�k
j=1 e2?i%j m(vPj , w) and rm=(vRm, w) . Since wD=1

for all D # D we get

|rm |=|(vRm, w) |�( |vRm|, w) =&vRm&1�&Rm& &v&1�K:m

for a constant K and :<r(M) by Theorem 2.
Choose p # N such that %jp # N holds for 1� j�k. Then e2?i%j p=1

for 1� j�k and cp+l=cl for all l�1 follow. The equation cm(T )=
cmr(M)m+rm , valid for all m # N, implies

cl=
1

r(M) l+ jp (cl+ jp(T )&rl+ jp) for all j�0

With Lemma 4 in ref. 15 we get cm(T )�&Mm&�r(M)m for all m�0. Since
|rm |�K:m for all m�0 we get ci>0 for 1�i�p and the result follows. K

6. REGRESSION METHOD FOR COMPUTING ENTROPY

We obtain by Theorem 3 for m # N

log cm(T )=m log r(M)+log cm+R(m)
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with R(m)=log(1+(rm�cmr(M)m). Observe that limm � � |R(m)|=0 since
|rm �cmr(M)m| tends to zero exponentially by Theorem 3. This suggests
to compute the line of best fit to the datsa pairs (n1 , log cn1

(T )),...,
(nk , log cnk

(T )) where the n i are large enough such that R(ni) is negligible.
Furthermore statistical effects, when computing the line of best fit, decrease
the influence of the R(ni) if the number of data points is large.

Furthermore Theorem 3 states, that the cm are periodic. Suppose
ci+kp=ci for 1�i�p and all k�0. Then we get

log ci+kp(T )=(i+kp) log r(M)+log ci+R(i+kp)

and the best fit process gives a line with slope log r(M)=htop(T ) and inter-
cept log ci for every i with 1�i�p.

If the period p is not too large it can be detected by a plot of the
data pairs (n1 , log cn1

(T )),..., (nk , log cnk
(T )). When a period is detected,

the estimate of htop(T ) can be improved by setting nj=n0+ jp.
If the transformation T is topologically mixing then the eigenvalue

*=r(M) is the only eigenvalue of M with |*|=r(M). Then cm(T )=
cr(M)m+rm for a constant c>0 follows with rm as in Theorem 3.
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